Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mater Today Bio ; 23: 100844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033367

RESUMO

A challenge in regenerative medicine is creating the three-dimensional organic and inorganic in vitro microenvironment of bone, which would allow the study of musculoskeletal disorders and the generation of building blocks for bone regeneration. This study presents a microwell-based platform for creating spheroids of human mesenchymal stromal cells, which are then mineralized using ionic calcium and phosphate supplementation. The resulting mineralized spheroids promote an osteogenic gene expression profile through the influence of the spheroids' biophysical environment and inorganic signaling and require less calcium or phosphate to achieve mineralization compared to a monolayer culture. We found that mineralized spheroids represent an in vitro model for studying small molecule perturbations and extracellular mediated calcification. Furthermore, we demonstrate that understanding pathway signaling elicited by the spheroid environment allows mimicking these pathways in traditional monolayer culture, enabling similar rapid mineralization events. In sum, this study demonstrates the rapid generation and employment of a mineralized cell model system for regenerative medicine applications.

2.
Acta Biomater ; 163: 275-286, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35584748

RESUMO

Cells and their surrounding extracellular matrix (ECM) are engaged in dynamic reciprocity to maintain tissue homeostasis: cells deposit ECM, which in turn presents the signals that define cell identity. This loop of phenotype is obvious for biochemical signals, such as collagens, which are produced by and presented to cells, but the role of biomechanical signals is also increasingly recognised. In addition, cell shape goes hand in hand with cell function and tissue homeostasis. Aberrant cell shape and ECM is seen in pathological conditions, and control of cell shape in micro-fabricated platforms disclose the causal relationship between cell shape and cell function, often mediated by mechanotransduction. In this manuscript, we discuss the loop of phenotype for tendon tissue homeostasis. We describe cell shape and ECM organization in normal and diseased tissue, how ECM composition influences tenocyte shape, and how that leads to the activation of signal transduction pathways and ECM deposition. We further describe the use of technologies to control cell shape to elucidate the link between cell shape and its phenotypical markers and focus on the causal role of cell shape in the loop of phenotype. STATEMENT OF SIGNIFICANCE: The dynamic reciprocity between cells and their surrounding extracellular matrix (ECM) influences biomechanical and biochemical properties of ECM as well as cell function through activation of signal transduction pathways that regulate gene and protein expression. We refer to this reciprocity as Loop of Phenotype and it has been studied and demonstrated extensively by using micro-fabricated platforms to manipulate cell shape and cell fate. In this manuscript, we discuss this concept in tendon tissue homeostasis by giving examples in healthy and pathological tenson tissue. Furthermore, we elaborate this by showing how biomaterials are used to feed this reciprocity to manipulate cell shape and function. Finally, we elucidate the link between cell shape and its phenotypical markers and focus on the activation of signal transduction pathways and ECM deposition.


Assuntos
Mecanotransdução Celular , Tenócitos , Mecanotransdução Celular/fisiologia , Tendões/fisiologia , Matriz Extracelular/metabolismo , Homeostase , Fenótipo
3.
Adv Sci (Weinh) ; : e2203880, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414384

RESUMO

Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.

4.
Biomaterials ; 283: 121431, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231787

RESUMO

Embryogenic developmental processes involve a tightly controlled regulation between mechanical forces and biochemical cues such as growth factors, matrix proteins, and cytokines. This interplay remains essential in the mature body, with aberrant pathway signaling leading to abnormalities such as atherosclerosis in the cardiovascular system, inflammation in tendon tissue, or osteoporosis in the bone. The aim of bone regenerative strategies is to develop tools and procedures that will harness the body's own self-repair ability in order to successfully regenerate even very large and complex bone defects and restore normal function. To achieve this, understanding pathways that govern processes of progenitor differentiation towards the osteogenic lineages, their phenotypical maintenance, and the construction of functional bone tissue is imperative to subsequently develop regenerative therapies that mimic these processes. While a body of literature exists that describes how biochemical stimuli guide cell behavior in the culture dish, due to the lack of an appropriate mechanical environment, these signals are often insufficient or inappropriate for achieving a desirable response in the body. Moreover, bone regenerative therapies rarely rely on a biochemical stimulus, such as a growth factor alone, and instead often comprise a carrier biomaterial that introduces a very different microenvironment from that of a cell culture dish. Therefore, in this review, we discuss which biomaterials elicit or influence pathways relevant for bone regeneration and describe mechanisms behind these effects, with the aim to inspire the development of novel, more effective bone regenerative therapies.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Osteogênese , Engenharia Tecidual/métodos
5.
Small ; 18(10): e2105704, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985808

RESUMO

In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored. Here, a high-throughput screening platform called "Galapagos chip" is developed. It contains a library of 2176 distinct subcellular chemical patterns created using mathematical algorithms and a straightforward UV-induced two-step surface modification. This approach enables the immobilization of ligands in geometrically defined regions onto cell culture substrates. To validate the system, binary RGD/polyethylene glycol patterns are prepared on which human mesenchymal stem cells are cultured, and the authors observe how different patterns affect cell and organelle morphology. As proof of concept, the cells are stained for the mechanosensitive YAP protein, and, using a machine-learning algorithm, it is demonstrated that cell shape and YAP nuclear translocation correlate. It is concluded that the Galapagos chip is a versatile platform to screen geometrical aspects of cell-ECM interaction.


Assuntos
Adesivos , Ensaios de Triagem em Larga Escala , Técnicas de Cultura de Células , Matriz Extracelular/metabolismo , Humanos , Polietilenoglicóis
6.
Adv Mater ; 33(31): e2102084, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165820

RESUMO

Surface topography is a tool to endow biomaterials with bioactive properties. However, the large number of possible designs makes it challenging to find the optimal surface structure to induce a specific cell response. The TopoChip platform is currently the largest collection of topographies with 2176 in silico designed microtopographies. Still, it is exploring only a small part of the design space due to design algorithm limitations and the surface engineering strategy. Inspired by the diversity of natural surfaces, it is assessed as to what extent the topographical design space and consequently the resulting cellular responses can be expanded using natural surfaces. To this end, 26 plant and insect surfaces are replicated in polystyrene and their surface properties are quantified using white light interferometry. Through machine-learning algorithms, it is demonstrated that natural surfaces extend the design space of the TopoChip, which coincides with distinct morphological and focal adhesion profiles in mesenchymal stem cells (MSCs) and Pseudomonas aeruginosa colonization. Furthermore, differentiation experiments reveal the strong potential of the holy lotus to improve osteogenesis in MSCs. In the future, the design algorithms will be trained with the results obtained by natural surface imprint experiments to explore the bioactive properties of novel surface topographies.


Assuntos
Materiais Biocompatíveis , Osteogênese , Adesão Celular , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais , Titânio
7.
Biomaterials ; 271: 120740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33714019

RESUMO

Human mesenchymal stem cells (hMSCs) are widely represented in regenerative medicine clinical strategies due to their compatibility with autologous implantation. Effective bone regeneration involves crosstalk between macrophages and hMSCs, with macrophages playing a key role in the recruitment and differentiation of hMSCs. However, engineered biomaterials able to simultaneously direct hMSC fate and modulate macrophage phenotype have not yet been identified. A novel combinatorial chemistry-topography screening platform, the ChemoTopoChip, is used here to identify materials suitable for bone regeneration by screening 1008 combinations in each experiment for human immortalized mesenchymal stem cell (hiMSCs) and human macrophage response. The osteoinduction achieved in hiMSCs cultured on the "hit" materials in basal media is comparable to that seen when cells are cultured in osteogenic media, illustrating that these materials offer a materials-induced alternative to osteo-inductive supplements in bone-regeneration. Some of these same chemistry-microtopography combinations also exhibit immunomodulatory stimuli, polarizing macrophages towards a pro-healing phenotype. Maximum control of cell response is achieved when both chemistry and topography are recruited to instruct the required cell phenotype, combining synergistically. The large combinatorial library allows us for the first time to probe the relative cell-instructive roles of microtopography and material chemistry which we find to provide similar ranges of cell modulation for both cues. Machine learning is used to generate structure-activity relationships that identify key chemical and topographical features enhancing the response of both cell types, providing a basis for a better understanding of cell response to micro topographically patterned polymers.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Diferenciação Celular , Humanos , Osteogênese
8.
Methods ; 190: 80-95, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278807

RESUMO

In the field of regenerative medicine, optimization of the parameters leading to a desirable outcome remains a huge challenge. Examples include protocols for the guided differentiation of pluripotent cells towards specialized and functional cell types, phenotypic maintenance of primary cells in cell culture, or engineering of materials for improved tissue interaction with medical implants. This challenge originates from the enormous design space for biomaterials, chemical and biochemical compounds, and incomplete knowledge of the guiding biological principles. To tackle this challenge, high-throughput platforms allow screening of multiple perturbations in one experimental setup. In this review, we provide an overview of screening platforms that are used in regenerative medicine. We discuss their fabrication techniques, and in silico tools to analyze the extensive data sets typically generated by these platforms.


Assuntos
Medicina Regenerativa , Materiais Biocompatíveis , Diferenciação Celular , Engenharia Tecidual
9.
Sci Rep ; 10(1): 18988, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149200

RESUMO

Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.


Assuntos
Técnicas de Cultura de Células/instrumentação , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/citologia , Adipogenia , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Análise de Sequência de RNA , Transdução de Sinais , Propriedades de Superfície
10.
Biomaterials ; 259: 120331, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32836056

RESUMO

We previously found that surface topographies induce the expression of the Scxa gene, encoding Scleraxis in tenocytes. Because Scxa is a TGF-ß responsive gene, we investigated the link between mechanotransduction and TGF-ß signaling. We discovered that mesenchymal stem cells exposed to both micro-topographies and TGF-ß2 display synergistic induction of SMAD phosphorylation and transcription of the TGF-ß target genes SCX, a-SMA, and SOX9. Pharmacological perturbations revealed that Rho/ROCK/SRF signaling is required for this synergistic response. We further found an activation of the early response genes SRF and EGR1 during the early adaptation phase on micro-topographies, which coincided with higher expression of the TGF-ß type-II receptor gene. Of interest, PKC activators Prostratin and Ingenol-3, known for inducing actin reorganization and activation of serum response elements, were able to mimic the topography-induced TGF-ß response. These findings provide novel insights into the convergence of mechanobiology and TGF-ß signaling, which can lead to improved culture protocols and therapeutic applications.


Assuntos
Células-Tronco Mesenquimais , Actinas/metabolismo , Células Cultivadas , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
11.
J Funct Biomater ; 11(3)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645945

RESUMO

The ability to control the interactions between functional biomaterials and biological systems is of great importance for tissue engineering and regenerative medicine. However, the underlying mechanisms defining the interplay between biomaterial properties and the human body are complex. Therefore, a key challenge is to design biomaterials that mimic the in vivo microenvironment. Over millions of years, nature has produced a wide variety of biological materials optimised for distinct functions, ranging from the extracellular matrix (ECM) for structural and biochemical support of cells to the holy lotus with special wettability for self-cleaning effects. Many of these systems found in biology possess unique surface properties recognised to regulate cell behaviour. Integration of such natural surface properties in biomaterials can bring about novel cell responses in vitro and provide greater insights into the processes occurring at the cell-biomaterial interface. Using natural surfaces as templates for bioinspired design can stimulate progress in the field of regenerative medicine, tissue engineering and biomaterials science. This literature review aims to combine the state-of-the-art knowledge in natural and nature-inspired surfaces, with an emphasis on material properties known to affect cell behaviour.

12.
Adv Sci (Weinh) ; 7(11): 1903392, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537404

RESUMO

Macrophages play a central role in orchestrating immune responses to foreign materials, which are often responsible for the failure of implanted medical devices. Material topography is known to influence macrophage attachment and phenotype, providing opportunities for the rational design of "immune-instructive" topographies to modulate macrophage function and thus foreign body responses to biomaterials. However, no generalizable understanding of the inter-relationship between topography and cell response exists. A high throughput screening approach is therefore utilized to investigate the relationship between topography and human monocyte-derived macrophage attachment and phenotype, using a diverse library of 2176 micropatterns generated by an algorithm. This reveals that micropillars 5-10 µm in diameter play a dominant role in driving macrophage attachment compared to the many other topographies screened, an observation that aligns with studies of the interaction of macrophages with particles. Combining the pillar size with the micropillar density is found to be key in modulation of cell phenotype from pro to anti-inflammatory states. Machine learning is used to successfully build a model that correlates cell attachment and phenotype with a selection of descriptors, illustrating that materials can potentially be designed to modulate inflammatory responses for future applications in the fight against foreign body rejection of medical devices.

13.
Acta Biomater ; 83: 277-290, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30394345

RESUMO

Tenocytes, the main cell type of the tendon, require mechanical stimuli for their proper function. When the tenocyte environment changes due to tissue damage or by transferring tenocytes from their native environment into cell culture, the signals from the tenocyte niche are lost, leading towards a decline of phenotypic markers. It is known that micro-topographies can influence cell fate by the physical cues they provide. To identify the optimal topography-induced biomechanical niche in vitro, we seeded tenocytes on the TopoChip, a micro-topographical screening platform, and measured expression of the tendon transcription factor Scleraxis. Through machine learning algorithms, we associated elevated Scleraxis levels with topological design parameters. Fabricating micro-topographies with optimal surface characteristics on larger surfaces allowed finding an improved expression of multiple tenogenic markers. However, long-term confluent culture conditions coincided with osteogenic marker expression and the loss of morphological characteristics. In contrast, passaging tenocytes which migrated from the tendon directly on the topography resulted in prolonged elongated morphology and elevated Scleraxis levels. This research provides new insights into how micro-topographies influence tenocyte cell fate, and supports the notion that micro-topographical design can be implemented in a new generation of tissue culture platforms for supporting the phenotype of tenocytes. STATEMENT OF SIGNIFICANCE: The challenge in controlling in vitro cell behavior lies in controlling the complex culture environment. Here, we present for the first time the use of micro-topographies as a biomechanical niche to support the phenotype of tenocytes. For this, we applied the TopoChip platform, a screening tool with 2176 unique micro-topographies for identifying feature characteristics associated with elevated Scleraxis expression, a tendon related marker. Large area fabrication of micro-topographies with favorable characteristics allowed us to find a beneficial influence on other tenogenic markers as well. Furthermore, passaging cells is more beneficial for Scleraxis marker expression and tenocyte morphology compared to confluent conditions. This study presents important insights for the understanding of tenocyte behavior in vitro, a necessary step towards tendon engineering.


Assuntos
Antígenos de Diferenciação/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Tendões/metabolismo , Tenócitos/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Ratos , Tendões/citologia , Tenócitos/citologia , Engenharia Tecidual
14.
Sci Rep ; 8(1): 7716, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769543

RESUMO

Mesenchymal stromal cells (MSC) secrete factors that contribute to organ homeostasis and repair in a tissue specific manner. For instance, kidney perivascular mesenchymal stromal cells (kPSCs) can facilitate renal epithelial repair through secretion of hepatocyte growth factor (HGF) while the secretome of bone marrow MSCs gives rise to immunosuppression. Stromal cells function in a complex 3-dimensional (3D) connective tissue architecture that induces conformational adaptation. Here we tested the hypothesis that surface topography and associated cell adaptations dictate stromal cell function through tuning of the cytokines released. To this end, we cultured human bone marrow and kidney perivascular stromal cells in the TopoWell plate, a custom-fabricated multi-well plate containing 76 unique bioactive surface topographies. Using fluorescent imaging, we observed profound changes in cell shape, accompanied by major quantitative changes in the secretory capacity of the MSCs. The cytokine secretion profile was closely related to cell morphology and was stromal cell type specific. Our data demonstrate that stromal cell function is determined by microenvironment structure and can be manipulated in an engineered setting. Our data also have implications for the clinical manufacturing of mesenchymal stromal cell therapy, where surface topography during bioreactor expansion should be taken into account to preserve therapeutic properties.


Assuntos
Células da Medula Óssea/citologia , Linhagem da Célula , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Rim/citologia , Células-Tronco Mesenquimais/citologia , Células Estromais/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo
15.
Tissue Eng Part B Rev ; 24(4): 255-266, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29455619

RESUMO

Development of multicellular organisms is a highly orchestrated process, with cells responding to factors and features present in the extracellular milieu. Changes in the surrounding environment help decide the fate of cells at various stages of development. This review highlights recent research that details the effects of mechanical properties of the surrounding environment and extracellular matrix and the underlying molecular mechanisms that regulate the behavior of embryonic stem cells (ESCs). In this study, we review the role of mechanical properties during embryogenesis and discuss the effect of engineered microtopographies on ESC pluripotency.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Nicho de Células-Tronco , Engenharia Tecidual/métodos , Animais , Desenvolvimento Embrionário , Células-Tronco Embrionárias Humanas/citologia , Humanos
16.
Tissue Eng Part A ; 23(9-10): 458-469, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28152670

RESUMO

Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.


Assuntos
Fosfatase Alcalina/biossíntese , Antígenos de Diferenciação/biossíntese , Condrogênese , Regulação Enzimológica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Microtomografia por Raio-X , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia
17.
Neurology ; 86(23): 2126-33, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27037232

RESUMO

OBJECTIVE: To generate a clinical and pathologic phenotype of patients carrying rare loss-of-function mutations in ABCA7, identified in a Belgian Alzheimer patient cohort and in an autosomal dominant family. METHODS: We performed a retrospective review of available data records, medical records, results of CSF analyses and neuroimaging studies, and neuropathology data. RESULTS: The mean onset age of the mutation carriers (n = 22) was 73.4 ± 8.4 years with a wide age range of 36 (54-90) years, which was independent of APOE genotype and cerebrovascular disease. The mean disease duration was 5.7 ± 3.0 years (range 2-12 years). A positive family history was recorded for 10 carriers (45.5%). All patient carriers except one presented with memory complaints. The 4 autopsied brains showed typical immunohistochemical changes of late-onset Alzheimer disease. CONCLUSIONS: All patients carrying a loss-of-function mutation in ABCA7 exhibited a classical Alzheimer disease phenotype, though with a striking wide onset age range, suggesting the influence of unknown modifying factors.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Mutação , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Progressão da Doença , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
18.
Lancet Neurol ; 14(8): 814-822, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26141617

RESUMO

BACKGROUND: ABCA7 was identified as a risk gene for Alzheimer's disease in genome-wide association studies (GWAS). It was one of the genes most strongly associated with risk of Alzheimer's disease in a Belgian cohort. Using targeted resequencing, we investigated ABCA7 in this cohort with the aim to directly detect rare and common variations in this gene associated with Alzheimer's disease pathogenesis. METHODS: We did massive parallel resequencing of ABCA7 after HaloPlex target enrichment of the exons, introns, and regulatory regions in 772 unrelated patients with Alzheimer's disease (mean age at onset 74·6 years [SD 8·9]) recruited at two memory clinics in Flanders, Belgium, and 757 geographically matched community-dwelling controls (mean age at inclusion 73·9 years [8·0]). After bioinformatic processing, common variants were analysed with conditional logistic regression and rare variant association analysis was done in Variant Association Tools. To explore an observed founder effect, additional unrelated patients with Alzheimer's disease (n=183, mean age at onset 78·8 years [SD 6·0]) and control individuals (n=265, mean age at inclusion 56·9 years [10·8]) from the same cohort who had not been included in massive parallel resequencing because of insufficient biosamples were screened for the ABCA7 frameshift mutation Glu709fs with Sanger sequencing. The effect of loss-of-function mutations on ABCA7 expression was investigated with quantitative real-time PCR in post-mortem brains of patients (n=3) and control individuals (n=4); nonsense mediated mRNA decay was investigated in lymphoblast cell lines from three predicted loss-of-function mutation carriers from the cohort of 772 patients with Alzheimer's disease. FINDINGS: An intronic low-frequency variant rs78117248 (minor allele frequency 3·8% in 58 patients with Alzheimer's disease and in controls 1·8% in 28 controls) showed strongest association with Alzheimer's disease (odds ratio 2·07, 95% CI 1·31-3·27; p=0·0016), and remained significant after conditioning for the GWAS top single nucleotide polymorphisms rs3764650, rs4147929, and rs3752246 (2·00, 1·22-3·26; p=0·006). We identified an increased frequency of predicted loss-of-function mutations in the patients compared with the controls (relative risk 4·03, 95% CI 1·75-9·29; p=0·0002). One frameshift mutation (Glu709fs) showed a founder effect in the study population, and was found to segregate with disease in a family with autosomal dominant inheritance of Alzheimer's disease. Expression of ABCA7 was reduced in the two carriers of loss-of-function mutations found only in patients with Alzheimer's disease (Glu709fs and Trp1214*) compared with four non-carrier controls (relative expression 0·45, 95% CI 0·25-0·84; p=0·002) and in lymphoblast cell lines from three carriers of Glu709fs compared with those from two non-carrier controls. INTERPRETATION: We propose that a low-frequency variant can explain the association between ABCA7 and Alzheimer's disease, and the evidence of loss-of-function mutations in this risk gene suggests that partial loss-of-function of ABCA7 could be a potential pathogenetic mechanism of Alzheimer's disease. FUNDING: Belgian Science Policy Office Interuniversity Attraction Poles program P7/16, Alzheimer Research Foundation, King Baudouin Foundation AB Fund, Methusalem Excellence Program initiative of the Flemish Government, Flanders Impulse Program on Networks for Dementia Research, Research Foundation Flanders, Agency for Innovation by Science and Technology Flanders, University of Antwerp Research Fund, and European Union's Seventh Framework Programme for Research, Technological development and Demonstration (AgedBrainSYSBIO).


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Frequência do Gene/genética , Análise de Sequência de DNA/métodos , Idoso , Idoso de 80 Anos ou mais , Bélgica , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único
19.
Mol Neurodegener ; 10: 30, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179372

RESUMO

BACKGROUND: The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the ß-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear. Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs. RESULTS: Three patient-specific CLU mutations in the ß-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines. CONCLUSIONS: Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the α- and ß-chain of CLU.


Assuntos
Doença de Alzheimer/genética , Clusterina/metabolismo , Mutação de Sentido Incorreto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/fisiopatologia , Substituição de Aminoácidos , Bélgica/epidemiologia , Transporte Biológico , Clusterina/genética , Cistina/química , Dimerização , Retículo Endoplasmático/metabolismo , Éxons/genética , Feminino , Mutação da Fase de Leitura , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Transdução Genética , Transfecção
20.
Alzheimers Dement ; 11(12): 1452-1460, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26086184

RESUMO

INTRODUCTION: The ability to identify individuals at increased genetic risk for Alzheimer's disease (AD) may streamline biomarker and drug trials and aid clinical and personal decision making. METHODS: We evaluated the discriminative ability of a genetic risk score (GRS) covering 22 published genetic risk loci for AD in 1162 Flanders-Belgian AD patients and 1019 controls and assessed correlations with family history, onset age, and cerebrospinal fluid (CSF) biomarkers (Aß1-42, T-Tau, P-Tau181P). RESULTS: A GRS including all single nucleotide polymorphisms (SNPs) and age-specific APOE ε4 weights reached area under the curve (AUC) 0.70, which increased to AUC 0.78 for patients with familial predisposition. Risk of AD increased with GRS (odds ratio, 2.32 (95% confidence interval 2.08-2.58 per unit; P < 1.0e(-15)). Onset age and CSF Aß1-42 decreased with increasing GRS (Ponset_age = 9.0e(-11); PAß = 8.9e(-7)). DISCUSSION: The discriminative ability of this 22-SNP GRS is still limited, but these data illustrate that incorporation of age-specific weights improves discriminative ability. GRS-phenotype correlations highlight the feasibility of identifying individuals at highest susceptibility.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Idade de Início , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Bélgica , Biomarcadores/líquido cefalorraquidiano , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/genética , Fenótipo , Fatores de Risco , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...